// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract Context {
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
pragma abicoder v2;
library LibSeaPort {
/**
* @dev For basic orders involving ETH / native / ERC20 <=> ERC721 / ERC1155
* matching, a group of six functions may be called that only requires a
* subset of the usual order arguments. Note the use of a "basicOrderType"
* enum; this represents both the usual order type as well as the "route"
* of the basic order (a simple derivation function for the basic order
* type is `basicOrderType = orderType + (4 * basicOrderRoute)`.)
*/
struct BasicOrderParameters {
address considerationToken; // 0x24
uint256 considerationIdentifier; // 0x44
uint256 considerationAmount; // 0x64
address payable offerer; // 0x84
address zone; // 0xa4
address offerToken; // 0xc4
uint256 offerIdentifier; // 0xe4
uint256 offerAmount; // 0x104
BasicOrderType basicOrderType; // 0x124
uint256 startTime; // 0x144
uint256 endTime; // 0x164
bytes32 zoneHash; // 0x184
uint256 salt; // 0x1a4
bytes32 offererConduitKey; // 0x1c4
bytes32 fulfillerConduitKey; // 0x1e4
uint256 totalOriginalAdditionalRecipients; // 0x204
AdditionalRecipient[] additionalRecipients; // 0x224
bytes signature; // 0x244
}
/**
* @dev Basic orders can supply any number of additional recipients, with the
* implied assumption that they are supplied from the offered ETH (or other
* native token) or ERC20 token for the order.
*/
struct AdditionalRecipient {
uint256 amount;
address payable recipient;
}
// prettier-ignore
enum BasicOrderType {
// 0: no partial fills, anyone can execute
ETH_TO_ERC721_FULL_OPEN,
// 1: partial fills supported, anyone can execute
ETH_TO_ERC721_PARTIAL_OPEN,
// 2: no partial fills, only offerer or zone can execute
ETH_TO_ERC721_FULL_RESTRICTED,
// 3: partial fills supported, only offerer or zone can execute
ETH_TO_ERC721_PARTIAL_RESTRICTED,
// 4: no partial fills, anyone can execute
ETH_TO_ERC1155_FULL_OPEN,
// 5: partial fills supported, anyone can execute
ETH_TO_ERC1155_PARTIAL_OPEN,
// 6: no partial fills, only offerer or zone can execute
ETH_TO_ERC1155_FULL_RESTRICTED,
// 7: partial fills supported, only offerer or zone can execute
ETH_TO_ERC1155_PARTIAL_RESTRICTED,
// 8: no partial fills, anyone can execute
ERC20_TO_ERC721_FULL_OPEN,
// 9: partial fills supported, anyone can execute
ERC20_TO_ERC721_PARTIAL_OPEN,
// 10: no partial fills, only offerer or zone can execute
ERC20_TO_ERC721_FULL_RESTRICTED,
// 11: partial fills supported, only offerer or zone can execute
ERC20_TO_ERC721_PARTIAL_RESTRICTED,
// 12: no partial fills, anyone can execute
ERC20_TO_ERC1155_FULL_OPEN,
// 13: partial fills supported, anyone can execute
ERC20_TO_ERC1155_PARTIAL_OPEN,
// 14: no partial fills, only offerer or zone can execute
ERC20_TO_ERC1155_FULL_RESTRICTED,
// 15: partial fills supported, only offerer or zone can execute
ERC20_TO_ERC1155_PARTIAL_RESTRICTED,
// 16: no partial fills, anyone can execute
ERC721_TO_ERC20_FULL_OPEN,
// 17: partial fills supported, anyone can execute
ERC721_TO_ERC20_PARTIAL_OPEN,
// 18: no partial fills, only offerer or zone can execute
ERC721_TO_ERC20_FULL_RESTRICTED,
// 19: partial fills supported, only offerer or zone can execute
ERC721_TO_ERC20_PARTIAL_RESTRICTED,
// 20: no partial fills, anyone can execute
ERC1155_TO_ERC20_FULL_OPEN,
// 21: partial fills supported, anyone can execute
ERC1155_TO_ERC20_PARTIAL_OPEN,
// 22: no partial fills, only offerer or zone can execute
ERC1155_TO_ERC20_FULL_RESTRICTED,
// 23: partial fills supported, only offerer or zone can execute
ERC1155_TO_ERC20_PARTIAL_RESTRICTED
}
/**
* @dev The full set of order components, with the exception of the counter,
* must be supplied when fulfilling more sophisticated orders or groups of
* orders. The total number of original consideration items must also be
* supplied, as the caller may specify additional consideration items.
*/
struct OrderParameters {
address offerer; // 0x00
address zone; // 0x20
OfferItem[] offer; // 0x40
ConsiderationItem[] consideration; // 0x60
OrderType orderType; // 0x80
uint256 startTime; // 0xa0
uint256 endTime; // 0xc0
bytes32 zoneHash; // 0xe0
uint256 salt; // 0x100
bytes32 conduitKey; // 0x120
uint256 totalOriginalConsiderationItems; // 0x140
// offer.length // 0x160
}
/**
* @dev Orders require a signature in addition to the other order parameters.
*/
struct Order {
OrderParameters parameters;
bytes signature;
}
struct AdvancedOrder {
OrderParameters parameters;
uint120 numerator;
uint120 denominator;
bytes signature;
bytes extraData;
}
struct OfferItem {
ItemType itemType;
address token;
uint256 identifierOrCriteria;
uint256 startAmount;
uint256 endAmount;
}
/**
* @dev A consideration item has the same five components as an offer item and
* an additional sixth component designating the required recipient of the
* item.
*/
struct ConsiderationItem {
ItemType itemType;
address token;
uint256 identifierOrCriteria;
uint256 startAmount;
uint256 endAmount;
address payable recipient;
}
// prettier-ignore
enum OrderType {
// 0: no partial fills, anyone can execute
FULL_OPEN,
// 1: partial fills supported, anyone can execute
PARTIAL_OPEN,
// 2: no partial fills, only offerer or zone can execute
FULL_RESTRICTED,
// 3: partial fills supported, only offerer or zone can execute
PARTIAL_RESTRICTED
}
// prettier-ignore
enum ItemType {
// 0: ETH on mainnet, MATIC on polygon, etc.
NATIVE,
// 1: ERC20 items (ERC777 and ERC20 analogues could also technically work)
ERC20,
// 2: ERC721 items
ERC721,
// 3: ERC1155 items
ERC1155,
// 4: ERC721 items where a number of tokenIds are supported
ERC721_WITH_CRITERIA,
// 5: ERC1155 items where a number of ids are supported
ERC1155_WITH_CRITERIA
}
/**
* @dev A fulfillment is applied to a group of orders. It decrements a series of
* offer and consideration items, then generates a single execution
* element. A given fulfillment can be applied to as many offer and
* consideration items as desired, but must contain at least one offer and
* at least one consideration that match. The fulfillment must also remain
* consistent on all key parameters across all offer items (same offerer,
* token, type, tokenId, and conduit preference) as well as across all
* consideration items (token, type, tokenId, and recipient).
*/
struct Fulfillment {
FulfillmentComponent[] offerComponents;
FulfillmentComponent[] considerationComponents;
}
/**
* @dev Each fulfillment component contains one index referencing a specific
* order and another referencing a specific offer or consideration item.
*/
struct FulfillmentComponent {
uint256 orderIndex;
uint256 itemIndex;
}
/**
* @dev An execution is triggered once all consideration items have been zeroed
* out. It sends the item in question from the offerer to the item's
* recipient, optionally sourcing approvals from either this contract
* directly or from the offerer's chosen conduit if one is specified. An
* execution is not provided as an argument, but rather is derived via
* orders, criteria resolvers, and fulfillments (where the total number of
* executions will be less than or equal to the total number of indicated
* fulfillments) and returned as part of `matchOrders`.
*/
struct Execution {
ReceivedItem item;
address offerer;
bytes32 conduitKey;
}
/**
* @dev A received item is translated from a utilized consideration item and has
* the same four components as a spent item, as well as an additional fifth
* component designating the required recipient of the item.
*/
struct ReceivedItem {
ItemType itemType;
address token;
uint256 identifier;
uint256 amount;
address payable recipient;
}
struct CriteriaResolver {
uint256 orderIndex;
Side side;
uint256 index;
uint256 identifier;
bytes32[] criteriaProof;
}
// prettier-ignore
enum Side {
// 0: Items that can be spent
OFFER,
// 1: Items that must be received
CONSIDERATION
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165Upgradeable {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize, which returns 0 for contracts in
// construction, since the code is only stored at the end of the
// constructor execution.
uint256 size;
// solhint-disable-next-line no-inline-assembly
assembly { size := extcodesize(account) }
return size > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(address(this).balance >= amount, "Address: insufficient balance");
// solhint-disable-next-line avoid-low-level-calls, avoid-call-value
(bool success, ) = recipient.call{ value: amount }("");
require(success, "Address: unable to send value, recipient may have reverted");
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain`call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data) internal returns (bytes memory) {
return functionCall(target, data, "Address: low-level call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data, string memory errorMessage) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) {
return functionCallWithValue(target, data, value, "Address: low-level call with value failed");
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(address target, bytes memory data, uint256 value, string memory errorMessage) internal returns (bytes memory) {
require(address(this).balance >= value, "Address: insufficient balance for call");
require(isContract(target), "Address: call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.call{ value: value }(data);
return _verifyCallResult(success, returndata, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) {
return functionStaticCall(target, data, "Address: low-level static call failed");
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data, string memory errorMessage) internal view returns (bytes memory) {
require(isContract(target), "Address: static call to non-contract");
// solhint-disable-next-line avoid-low-level-calls
(bool success, bytes memory returndata) = target.staticcall(data);
return _verifyCallResult(success, returndata, errorMessage);
}
function _verifyCallResult(bool success, bytes memory returndata, string memory errorMessage) private pure returns(bytes memory) {
if (success) {
return returndata;
} else {
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
// solhint-disable-next-line no-inline-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
pragma abicoder v2;
library LibLooksRare {
struct MakerOrder {
bool isOrderAsk; // true --> ask / false --> bid
address signer; // signer of the maker order
address collection; // collection address
uint256 price; // price (used as )
uint256 tokenId; // id of the token
uint256 amount; // amount of tokens to sell/purchase (must be 1 for ERC721, 1+ for ERC1155)
address strategy; // strategy for trade execution (e.g., DutchAuction, StandardSaleForFixedPrice)
address currency; // currency (e.g., WETH)
uint256 nonce; // order nonce (must be unique unless new maker order is meant to override existing one e.g., lower ask price)
uint256 startTime; // startTime in timestamp
uint256 endTime; // endTime in timestamp
uint256 minPercentageToAsk; // slippage protection (9000 --> 90% of the final price must return to ask)
bytes params; // additional parameters
uint8 v; // v: parameter (27 or 28)
bytes32 r; // r: parameter
bytes32 s; // s: parameter
}
struct TakerOrder {
bool isOrderAsk; // true --> ask / false --> bid
address taker; // msg.sender
uint256 price; // final price for the purchase
uint256 tokenId;
uint256 minPercentageToAsk; // // slippage protection (9000 --> 90% of the final price must return to ask)
bytes params; // other params (e.g., tokenId)
}
/**
* @notice CollectionType is used in OrderStructs.Maker's collectionType to determine the collection type being traded.
*/
enum CollectionType {
ERC721,
ERC1155
}
/**
* @notice QuoteType is used in OrderStructs.Maker's quoteType to determine whether the maker order is a bid or an ask.
*/
enum QuoteType {
Bid,
Ask
}
/**
* 1. Maker struct
*/
/**
* @notice Maker is the struct for a maker order.
* @param quoteType Quote type (i.e. 0 = BID, 1 = ASK)
* @param globalNonce Global user order nonce for maker orders
* @param subsetNonce Subset nonce (shared across bid/ask maker orders)
* @param orderNonce Order nonce (it can be shared across bid/ask maker orders)
* @param strategyId Strategy id
* @param collectionType Collection type (i.e. 0 = ERC721, 1 = ERC1155)
* @param collection Collection address
* @param currency Currency address (@dev address(0) = ETH)
* @param signer Signer address
* @param startTime Start timestamp
* @param endTime End timestamp
* @param price Minimum price for maker ask, maximum price for maker bid
* @param itemIds Array of itemIds
* @param amounts Array of amounts
* @param additionalParameters Extra data specific for the order
*/
struct Maker {
QuoteType quoteType;
uint256 globalNonce;
uint256 subsetNonce;
uint256 orderNonce;
uint256 strategyId;
CollectionType collectionType;
address collection;
address currency;
address signer;
uint256 startTime;
uint256 endTime;
uint256 price;
uint256[] itemIds;
uint256[] amounts;
bytes additionalParameters;
}
/**
* 2. Taker struct
*/
/**
* @notice Taker is the struct for a taker ask/bid order. It contains the parameters required for a direct purchase.
* @dev Taker struct is matched against MakerAsk/MakerBid structs at the protocol level.
* @param recipient Recipient address (to receive NFTs or non-fungible tokens)
* @param additionalParameters Extra data specific for the order
*/
struct Taker {
address recipient;
bytes additionalParameters;
}
/**
* 3. Merkle tree struct
*/
enum MerkleTreeNodePosition {
Left,
Right
}
/**
* @notice MerkleTreeNode is a MerkleTree's node.
* @param value It can be an order hash or a proof
* @param position The node's position in its branch.
* It can be left or right or none
* (before the tree is sorted).
*/
struct MerkleTreeNode {
bytes32 value;
MerkleTreeNodePosition position;
}
/**
* @notice MerkleTree is the struct for a merkle tree of order hashes.
* @dev A Merkle tree can be computed with order hashes.
* It can contain order hashes from both maker bid and maker ask structs.
* @param root Merkle root
* @param proof Array containing the merkle proof
*/
struct MerkleTree {
bytes32 root;
MerkleTreeNode[] proof;
}
}
// SPDX-License-Identifier: MIT
// solhint-disable-next-line compiler-version
pragma solidity >=0.4.24 <0.8.0;
import "../utils/AddressUpgradeable.sol";
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since a proxied contract can't have a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {UpgradeableProxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
*/
bool private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Modifier to protect an initializer function from being invoked twice.
*/
modifier initializer() {
require(_initializing || _isConstructor() || !_initialized, "Initializable: contract is already initialized");
bool isTopLevelCall = !_initializing;
if (isTopLevelCall) {
_initializing = true;
_initialized = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
}
}
/// @dev Returns true if and only if the function is running in the constructor
function _isConstructor() private view returns (bool) {
return !AddressUpgradeable.isContract(address(this));
}
}
@rarible/lib-signature/contracts/LibSignature.sol
// SPDX-License-Identifier: MIT
pragma solidity ^0.7.0;
library LibSignature {
/**
* @dev Returns the address that signed a hashed message (`hash`) with
* `signature`. This address can then be used for verification purposes.
*
* The `ecrecover` EVM opcode allows for malleable (non-unique) signatures:
* this function rejects them by requiring the `s` value to be in the lower
* half order, and the `v` value to be either 27 or 28.
*
* IMPORTANT: `hash` _must_ be the result of a hash operation for the
* verification to be secure: it is possible to craft signatures that
* recover to arbitrary addresses for non-hashed data. A safe way to ensure
* this is by receiving a hash of the original message (which may otherwise
* be too long), and then calling {toEthSignedMessageHash} on it.
*/
function recover(bytes32 hash, bytes memory signature)
internal
pure
returns (address)
{
// Check the signature length
if (signature.length != 65) {
revert("ECDSA: invalid signature length");
}
// Divide the signature in r, s and v variables
bytes32 r;
bytes32 s;
uint8 v;
// ecrecover takes the signature parameters, and the only way to get them
// currently is to use assembly.
// solhint-disable-next-line no-inline-assembly
assembly {
r := mload(add(signature, 0x20))
s := mload(add(signature, 0x40))
v := byte(0, mload(add(signature, 0x60)))
}
return recover(hash, v, r, s);
}
/**
* @dev Overload of {ECDSA-recover-bytes32-bytes-} that receives the `v`,
* `r` and `s` signature fields separately.
*/
function recover(
bytes32 hash,
uint8 v,
bytes32 r,
bytes32 s
) internal pure returns (address) {
// EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature
// unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines
// the valid range for s in (281): 0 < s < secp256k1n Ć· 2 + 1, and for v in (282): v ā {27, 28}. Most
// signatures from current libraries generate a unique signature with an s-value in the lower half order.
//
// If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value
// with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or
// vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept
// these malleable signatures as well.
require(
uint256(s) <=
0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0,
"ECDSA: invalid signature 's' value"
);
// If the signature is valid (and not malleable), return the signer address
// v > 30 is a special case, we need to adjust hash with "\x19Ethereum Signed Message:\n32"
// and v = v - 4
address signer;
if (v > 30) {
require(
v - 4 == 27 || v - 4 == 28,
"ECDSA: invalid signature 'v' value"
);
signer = ecrecover(toEthSignedMessageHash(hash), v - 4, r, s);
} else {
require(v == 27 || v == 28, "ECDSA: invalid signature 'v' value");
signer = ecrecover(hash, v, r, s);
}
require(signer != address(0), "ECDSA: invalid signature");
return signer;
}
/**
* @dev Returns an Ethereum Signed Message, created from a `hash`. This
* replicates the behavior of the
* https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_sign[`eth_sign`]
* JSON-RPC method.
*
* See {recover}.
*/
function toEthSignedMessageHash(bytes32 hash)
internal
pure
returns (bytes32)
{
// 32 is the length in bytes of hash,
// enforced by the type signature above
return
keccak256(
abi.encodePacked("\x19Ethereum Signed Message:\n32", hash)
);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721.onERC721Received.selector`.
*/
function onERC721Received(address operator, address from, uint256 tokenId, bytes calldata data) external returns (bytes4);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../proxy/Initializable.sol";
/**
* @dev https://eips.ethereum.org/EIPS/eip-712[EIP 712] is a standard for hashing and signing of typed structured data.
*
* The encoding specified in the EIP is very generic, and such a generic implementation in Solidity is not feasible,
* thus this contract does not implement the encoding itself. Protocols need to implement the type-specific encoding
* they need in their contracts using a combination of `abi.encode` and `keccak256`.
*
* This contract implements the EIP 712 domain separator ({_domainSeparatorV4}) that is used as part of the encoding
* scheme, and the final step of the encoding to obtain the message digest that is then signed via ECDSA
* ({_hashTypedDataV4}).
*
* The implementation of the domain separator was designed to be as efficient as possible while still properly updating
* the chain id to protect against replay attacks on an eventual fork of the chain.
*
* NOTE: This contract implements the version of the encoding known as "v4", as implemented by the JSON RPC method
* https://docs.metamask.io/guide/signing-data.html[`eth_signTypedDataV4` in MetaMask].
*
* _Available since v3.4._
*/
abstract contract EIP712Upgradeable is Initializable {
/* solhint-disable var-name-mixedcase */
bytes32 private _HASHED_NAME;
bytes32 private _HASHED_VERSION;
bytes32 private constant _TYPE_HASH = keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)");
/* solhint-enable var-name-mixedcase */
/**
* @dev Initializes the domain separator and parameter caches.
*
* The meaning of `name` and `version` is specified in
* https://eips.ethereum.org/EIPS/eip-712#definition-of-domainseparator[EIP 712]:
*
* - `name`: the user readable name of the signing domain, i.e. the name of the DApp or the protocol.
* - `version`: the current major version of the signing domain.
*
* NOTE: These parameters cannot be changed except through a xref:learn::upgrading-smart-contracts.adoc[smart
* contract upgrade].
*/
function __EIP712_init(string memory name, string memory version) internal initializer {
__EIP712_init_unchained(name, version);
}
function __EIP712_init_unchained(string memory name, string memory version) internal initializer {
bytes32 hashedName = keccak256(bytes(name));
bytes32 hashedVersion = keccak256(bytes(version));
_HASHED_NAME = hashedName;
_HASHED_VERSION = hashedVersion;
}
/**
* @dev Returns the domain separator for the current chain.
*/
function _domainSeparatorV4() internal view returns (bytes32) {
return _buildDomainSeparator(_TYPE_HASH, _EIP712NameHash(), _EIP712VersionHash());
}
function _buildDomainSeparator(bytes32 typeHash, bytes32 name, bytes32 version) private view returns (bytes32) {
return keccak256(
abi.encode(
typeHash,
name,
version,
_getChainId(),
address(this)
)
);
}
/**
* @dev Given an already https://eips.ethereum.org/EIPS/eip-712#definition-of-hashstruct[hashed struct], this
* function returns the hash of the fully encoded EIP712 message for this domain.
*
* This hash can be used together with {ECDSA-recover} to obtain the signer of a message. For example:
*
* ```solidity
* bytes32 digest = _hashTypedDataV4(keccak256(abi.encode(
* keccak256("Mail(address to,string contents)"),
* mailTo,
* keccak256(bytes(mailContents))
* )));
* address signer = ECDSA.recover(digest, signature);
* ```
*/
function _hashTypedDataV4(bytes32 structHash) internal view virtual returns (bytes32) {
return keccak256(abi.encodePacked("\x19\x01", _domainSeparatorV4(), structHash));
}
function _getChainId() private view returns (uint256 chainId) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
// solhint-disable-next-line no-inline-assembly
assembly {
chainId := chainid()
}
}
/**
* @dev The hash of the name parameter for the EIP712 domain.
*
* NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
* are a concern.
*/
function _EIP712NameHash() internal virtual view returns (bytes32) {
return _HASHED_NAME;
}
/**
* @dev The hash of the version parameter for the EIP712 domain.
*
* NOTE: This function reads from storage by default, but can be redefined to return a constant value if gas costs
* are a concern.
*/
function _EIP712VersionHash() internal virtual view returns (bytes32) {
return _HASHED_VERSION;
}
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMathUpgradeable {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.9 <0.8.0;
pragma abicoder v2;
import "@rarible/exchange-v2/contracts/ExchangeV2.sol";
import {RoyaltiesRegistry} from "@rarible/royalties-registry/contracts/RoyaltiesRegistry.sol";
import {TransferProxy} from "@rarible/transfer-proxy/contracts/proxy/TransferProxy.sol";
import {ERC20TransferProxy} from "@rarible/transfer-proxy/contracts/proxy/ERC20TransferProxy.sol";
interface IExchangeV2 {
function matchOrders(
LibOrder.Order memory orderLeft,
bytes memory signatureLeft,
LibOrder.Order memory orderRight,
bytes memory signatureRight
) external payable;
function directPurchase(
LibDirectTransfer.Purchase calldata direct
) external payable;
}
@rarible/lib-signature/contracts/IERC1271.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
interface IERC1271 {
/**
* @dev Should return whether the signature provided is valid for the provided data
* @param _hash Hash of the data signed on the behalf of address(this)
* @param _signature Signature byte array associated with _data
*
* MUST return the bytes4 magic value 0x1626ba7e when function passes.
* MUST NOT modify state (using STATICCALL for solc < 0.5, view modifier for solc > 0.5)
* MUST allow external calls
*/
function isValidSignature(bytes32 _hash, bytes calldata _signature) virtual external view returns (bytes4 magicValue);
}
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
import "./LibOrder.sol";
library LibFill {
struct FillResult {
uint leftValue;
uint rightValue;
}
struct IsMakeFill {
bool leftMake;
bool rightMake;
}
/**
* @dev Should return filled values
* @param leftOrder left order
* @param rightOrder right order
* @param leftOrderFill current fill of the left order (0 if order is unfilled)
* @param rightOrderFill current fill of the right order (0 if order is unfilled)
* @param leftIsMakeFill true if left orders fill is calculated from the make side, false if from the take side
* @param rightIsMakeFill true if right orders fill is calculated from the make side, false if from the take side
*/
function fillOrder(LibOrder.Order memory leftOrder, LibOrder.Order memory rightOrder, uint leftOrderFill, uint rightOrderFill, bool leftIsMakeFill, bool rightIsMakeFill) internal pure returns (FillResult memory) {
(uint leftMakeValue, uint leftTakeValue) = LibOrder.calculateRemaining(leftOrder, leftOrderFill, leftIsMakeFill);
(uint rightMakeValue, uint rightTakeValue) = LibOrder.calculateRemaining(rightOrder, rightOrderFill, rightIsMakeFill);
//We have 3 cases here:
if (rightTakeValue > leftMakeValue) { //1nd: left order should be fully filled
return fillLeft(leftMakeValue, leftTakeValue, rightOrder.makeAsset.value, rightOrder.takeAsset.value);
}//2st: right order should be fully filled or 3d: both should be fully filled if required values are the same
return fillRight(leftOrder.makeAsset.value, leftOrder.takeAsset.value, rightMakeValue, rightTakeValue);
}
function fillRight(uint leftMakeValue, uint leftTakeValue, uint rightMakeValue, uint rightTakeValue) internal pure returns (FillResult memory result) {
uint makerValue = LibMath.safeGetPartialAmountFloor(rightTakeValue, leftMakeValue, leftTakeValue);
require(makerValue <= rightMakeValue, "fillRight: unable to fill");
return FillResult(rightTakeValue, makerValue);
}
function fillLeft(uint leftMakeValue, uint leftTakeValue, uint rightMakeValue, uint rightTakeValue) internal pure returns (FillResult memory result) {
uint rightTake = LibMath.safeGetPartialAmountFloor(leftTakeValue, rightMakeValue, rightTakeValue);
require(rightTake <= leftMakeValue, "fillLeft: unable to fill");
return FillResult(leftMakeValue, leftTakeValue);
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20Upgradeable {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender) external view returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(address sender, address recipient, uint256 amount) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(address indexed owner, address indexed spender, uint256 value);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../../introspection/IERC165.sol";
/**
* _Available since v3.1._
*/
interface IERC1155Receiver is IERC165 {
/**
@dev Handles the receipt of a single ERC1155 token type. This function is
called at the end of a `safeTransferFrom` after the balance has been updated.
To accept the transfer, this must return
`bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
(i.e. 0xf23a6e61, or its own function selector).
@param operator The address which initiated the transfer (i.e. msg.sender)
@param from The address which previously owned the token
@param id The ID of the token being transferred
@param value The amount of tokens being transferred
@param data Additional data with no specified format
@return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
)
external
returns(bytes4);
/**
@dev Handles the receipt of a multiple ERC1155 token types. This function
is called at the end of a `safeBatchTransferFrom` after the balances have
been updated. To accept the transfer(s), this must return
`bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
(i.e. 0xbc197c81, or its own function selector).
@param operator The address which initiated the batch transfer (i.e. msg.sender)
@param from The address which previously owned the token
@param ids An array containing ids of each token being transferred (order and length must match values array)
@param values An array containing amounts of each token being transferred (order and length must match ids array)
@param data Additional data with no specified format
@return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
)
external
returns(bytes4);
}
@rarible/exchange-v2/contracts/ExchangeV2Core.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
pragma abicoder v2;
import "./libraries/LibFill.sol";
import "./libraries/LibOrderData.sol";
import "./libraries/LibDirectTransfer.sol";
import "./OrderValidator.sol";
import "./AssetMatcher.sol";
import "@rarible/transfer-manager/contracts/TransferExecutor.sol";
import "@rarible/transfer-manager/contracts/interfaces/ITransferManager.sol";
import "@rarible/transfer-manager/contracts/lib/LibDeal.sol";
abstract contract ExchangeV2Core is Initializable, OwnableUpgradeable, AssetMatcher, TransferExecutor, OrderValidator, ITransferManager {
using SafeMathUpgradeable for uint;
using LibTransfer for address;
uint256 private constant UINT256_MAX = type(uint256).max;
//state of the orders
mapping(bytes32 => uint) public fills;
//events
event Cancel(bytes32 hash);
event Match(bytes32 leftHash, bytes32 rightHash, uint newLeftFill, uint newRightFill);
function cancel(LibOrder.Order memory order) external {
require(_msgSender() == order.maker, "not a maker");
require(order.salt != 0, "0 salt can't be used");
bytes32 orderKeyHash = LibOrder.hashKey(order);
fills[orderKeyHash] = UINT256_MAX;
emit Cancel(orderKeyHash);
}
/**
* @dev function, generate sellOrder and buyOrder from parameters and call validateAndMatch() for purchase transaction
*/
function directPurchase(
LibDirectTransfer.Purchase calldata direct
) external payable{
LibAsset.AssetType memory paymentAssetType = getPaymentAssetType(direct.paymentToken);
LibOrder.Order memory sellOrder = LibOrder.Order(
direct.sellOrderMaker,
LibAsset.Asset(
LibAsset.AssetType(
direct.nftAssetClass,
direct.nftData
),
direct.sellOrderNftAmount
),
address(0),
LibAsset.Asset(
paymentAssetType,
direct.sellOrderPaymentAmount
),
direct.sellOrderSalt,
direct.sellOrderStart,
direct.sellOrderEnd,
direct.sellOrderDataType,
direct.sellOrderData
);
LibOrder.Order memory buyOrder = LibOrder.Order(
address(0),
LibAsset.Asset(
paymentAssetType,
direct.buyOrderPaymentAmount
),
address(0),
LibAsset.Asset(
LibAsset.AssetType(
direct.nftAssetClass,
direct.nftData
),
direct.buyOrderNftAmount
),
0,
0,
0,
getOtherOrderType(direct.sellOrderDataType),
direct.buyOrderData
);
validateFull(sellOrder, direct.sellOrderSignature);
matchAndTransfer(sellOrder, buyOrder);
}
/**
* @dev function, generate sellOrder and buyOrder from parameters and call validateAndMatch() for accept bid transaction
* @param direct struct with parameters for accept bid operation
*/
function directAcceptBid(
LibDirectTransfer.AcceptBid calldata direct
) external payable {
LibAsset.AssetType memory paymentAssetType = getPaymentAssetType(direct.paymentToken);
LibOrder.Order memory buyOrder = LibOrder.Order(
direct.bidMaker,
LibAsset.Asset(
paymentAssetType,
direct.bidPaymentAmount
),
address(0),
LibAsset.Asset(
LibAsset.AssetType(
direct.nftAssetClass,
direct.nftData
),
direct.bidNftAmount
),
direct.bidSalt,
direct.bidStart,
direct.bidEnd,
direct.bidDataType,
direct.bidData
);
LibOrder.Order memory sellOrder = LibOrder.Order(
address(0),
LibAsset.Asset(
LibAsset.AssetType(
direct.nftAssetClass,
direct.nftData
),
direct.sellOrderNftAmount
),
address(0),
LibAsset.Asset(
paymentAssetType,
direct.sellOrderPaymentAmount
),
0,
0,
0,
getOtherOrderType(direct.bidDataType),
direct.sellOrderData
);
validateFull(buyOrder, direct.bidSignature);
matchAndTransfer(sellOrder, buyOrder);
}
function matchOrders(
LibOrder.Order memory orderLeft,
bytes memory signatureLeft,
LibOrder.Order memory orderRight,
bytes memory signatureRight
) external payable {
validateOrders(orderLeft, signatureLeft, orderRight, signatureRight);
matchAndTransfer(orderLeft, orderRight);
}
/**
* @dev function, validate orders
* @param orderLeft left order
* @param signatureLeft order left signature
* @param orderRight right order
* @param signatureRight order right signature
*/
function validateOrders(LibOrder.Order memory orderLeft, bytes memory signatureLeft, LibOrder.Order memory orderRight, bytes memory signatureRight) internal view {
validateFull(orderLeft, signatureLeft);
validateFull(orderRight, signatureRight);
if (orderLeft.taker != address(0)) {
if (orderRight.maker != address(0))
require(orderRight.maker == orderLeft.taker, "leftOrder.taker verification failed");
}
if (orderRight.taker != address(0)) {
if (orderLeft.maker != address(0))
require(orderRight.taker == orderLeft.maker, "rightOrder.taker verification failed");
}
}
/**
@notice matches valid orders and transfers their assets
@param orderLeft the left order of the match
@param orderRight the right order of the match
*/
function matchAndTransfer(LibOrder.Order memory orderLeft, LibOrder.Order memory orderRight) internal {
(LibAsset.AssetType memory makeMatch, LibAsset.AssetType memory takeMatch) = matchAssets(orderLeft, orderRight);
(LibOrderData.GenericOrderData memory leftOrderData, LibOrderData.GenericOrderData memory rightOrderData, LibFill.FillResult memory newFill) =
parseOrdersSetFillEmitMatch(orderLeft, orderRight);
(uint totalMakeValue, uint totalTakeValue) = doTransfers(
LibDeal.DealSide({
asset: LibAsset.Asset({
assetType: makeMatch,
value: newFill.leftValue
}),
payouts: leftOrderData.payouts,
originFees: leftOrderData.originFees,
proxy: proxies[makeMatch.assetClass],
from: orderLeft.maker
}),
LibDeal.DealSide({
asset: LibAsset.Asset(
takeMatch,
newFill.rightValue
),
payouts: rightOrderData.payouts,
originFees: rightOrderData.originFees,
proxy: proxies[takeMatch.assetClass],
from: orderRight.maker
}),
getDealData(
makeMatch.assetClass,
takeMatch.assetClass,
orderLeft.dataType,
orderRight.dataType,
leftOrderData,
rightOrderData
)
);
if (makeMatch.assetClass == LibAsset.ETH_ASSET_CLASS) {
require(takeMatch.assetClass != LibAsset.ETH_ASSET_CLASS);
require(msg.value >= totalMakeValue, "not enough eth");
if (msg.value > totalMakeValue) {
address(msg.sender).transferEth(msg.value.sub(totalMakeValue));
}
} else if (takeMatch.assetClass == LibAsset.ETH_ASSET_CLASS) {
require(msg.value >= totalTakeValue, "not enough eth");
if (msg.value > totalTakeValue) {
address(msg.sender).transferEth(msg.value.sub(totalTakeValue));
}
}
}
function parseOrdersSetFillEmitMatch(
LibOrder.Order memory orderLeft,
LibOrder.Order memory orderRight
) internal returns (LibOrderData.GenericOrderData memory leftOrderData, LibOrderData.GenericOrderData memory rightOrderData, LibFill.FillResult memory newFill) {
bytes32 leftOrderKeyHash = LibOrder.hashKey(orderLeft);
bytes32 rightOrderKeyHash = LibOrder.hashKey(orderRight);
address msgSender = _msgSender();
if (orderLeft.maker == address(0)) {
orderLeft.maker = msgSender;
}
if (orderRight.maker == address(0)) {
orderRight.maker = msgSender;
}
leftOrderData = LibOrderData.parse(orderLeft);
rightOrderData = LibOrderData.parse(orderRight);
newFill = setFillEmitMatch(
orderLeft,
orderRight,
leftOrderKeyHash,
rightOrderKeyHash,
leftOrderData.isMakeFill,
rightOrderData.isMakeFill
);
}
function getDealData(
bytes4 makeMatchAssetClass,
bytes4 takeMatchAssetClass,
bytes4 leftDataType,
bytes4 rightDataType,
LibOrderData.GenericOrderData memory leftOrderData,
LibOrderData.GenericOrderData memory rightOrderData
) internal pure returns(LibDeal.DealData memory dealData) {
dealData.feeSide = LibFeeSide.getFeeSide(makeMatchAssetClass, takeMatchAssetClass);
dealData.maxFeesBasePoint = getMaxFee(
leftDataType,
rightDataType,
leftOrderData,
rightOrderData,
dealData.feeSide
);
}
/**
@notice determines the max amount of fees for the match
@param dataTypeLeft data type of the left order
@param dataTypeRight data type of the right order
@param leftOrderData data of the left order
@param rightOrderData data of the right order
@param feeSide fee side of the match
@return max fee amount in base points
*/
function getMaxFee(
bytes4 dataTypeLeft,
bytes4 dataTypeRight,
LibOrderData.GenericOrderData memory leftOrderData,
LibOrderData.GenericOrderData memory rightOrderData,
LibFeeSide.FeeSide feeSide
) internal pure returns(uint) {
if (
dataTypeLeft != LibOrderDataV3.V3_SELL &&
dataTypeRight != LibOrderDataV3.V3_SELL &&
dataTypeLeft != LibOrderDataV3.V3_BUY &&
dataTypeRight != LibOrderDataV3.V3_BUY
){
return 0;
}
uint matchFees = getSumFees(leftOrderData.originFees, rightOrderData.originFees);
uint maxFee;
if (feeSide == LibFeeSide.FeeSide.LEFT) {
maxFee = rightOrderData.maxFeesBasePoint;
require(
dataTypeLeft == LibOrderDataV3.V3_BUY &&
dataTypeRight == LibOrderDataV3.V3_SELL,
"wrong V3 type1"
);
} else if (feeSide == LibFeeSide.FeeSide.RIGHT) {
maxFee = leftOrderData.maxFeesBasePoint;
require(
dataTypeRight == LibOrderDataV3.V3_BUY &&
dataTypeLeft == LibOrderDataV3.V3_SELL,
"wrong V3 type2"
);
} else {
return 0;
}
require(
maxFee > 0 &&
maxFee >= matchFees &&
maxFee <= 1000,
"wrong maxFee"
);
return maxFee;
}
/**
@notice calculates amount of fees for the match
@param originLeft origin fees of the left order
@param originRight origin fees of the right order
@return sum of all fees for the match (protcolFee + leftOrder.originFees + rightOrder.originFees)
*/
function getSumFees(LibPart.Part[] memory originLeft, LibPart.Part[] memory originRight) internal pure returns(uint) {
uint result = 0;
//adding left origin fees
for (uint i; i < originLeft.length; i ++) {
result = result + originLeft[i].value;
}
//adding right origin fees
for (uint i; i < originRight.length; i ++) {
result = result + originRight[i].value;
}
return result;
}
/**
@notice calculates fills for the matched orders and set them in "fills" mapping
@param orderLeft left order of the match
@param orderRight right order of the match
@param leftMakeFill true if the left orders uses make-side fills, false otherwise
@param rightMakeFill true if the right orders uses make-side fills, false otherwise
@return returns change in orders' fills by the match
*/
function setFillEmitMatch(
LibOrder.Order memory orderLeft,
LibOrder.Order memory orderRight,
bytes32 leftOrderKeyHash,
bytes32 rightOrderKeyHash,
bool leftMakeFill,
bool rightMakeFill
) internal returns (LibFill.FillResult memory) {
uint leftOrderFill = getOrderFill(orderLeft.salt, leftOrderKeyHash);
uint rightOrderFill = getOrderFill(orderRight.salt, rightOrderKeyHash);
LibFill.FillResult memory newFill = LibFill.fillOrder(orderLeft, orderRight, leftOrderFill, rightOrderFill, leftMakeFill, rightMakeFill);
require(newFill.rightValue > 0 && newFill.leftValue > 0, "nothing to fill");
if (orderLeft.salt != 0) {
if (leftMakeFill) {
fills[leftOrderKeyHash] = leftOrderFill.add(newFill.leftValue);
} else {
fills[leftOrderKeyHash] = leftOrderFill.add(newFill.rightValue);
}
}
if (orderRight.salt != 0) {
if (rightMakeFill) {
fills[rightOrderKeyHash] = rightOrderFill.add(newFill.rightValue);
} else {
fills[rightOrderKeyHash] = rightOrderFill.add(newFill.leftValue);
}
}
emit Match(leftOrderKeyHash, rightOrderKeyHash, newFill.rightValue, newFill.leftValue);
return newFill;
}
function getOrderFill(uint salt, bytes32 hash) internal view returns (uint fill) {
if (salt == 0) {
fill = 0;
} else {
fill = fills[hash];
}
}
function matchAssets(LibOrder.Order memory orderLeft, LibOrder.Order memory orderRight) internal view returns (LibAsset.AssetType memory makeMatch, LibAsset.AssetType memory takeMatch) {
makeMatch = matchAssets(orderLeft.makeAsset.assetType, orderRight.takeAsset.assetType);
require(makeMatch.assetClass != 0, "assets don't match");
takeMatch = matchAssets(orderLeft.takeAsset.assetType, orderRight.makeAsset.assetType);
require(takeMatch.assetClass != 0, "assets don't match");
}
function validateFull(LibOrder.Order memory order, bytes memory signature) internal view {
LibOrder.validateOrderTime(order);
validate(order, signature);
}
function getPaymentAssetType(address token) internal pure returns(LibAsset.AssetType memory){
LibAsset.AssetType memory result;
if(token == address(0)) {
result.assetClass = LibAsset.ETH_ASSET_CLASS;
} else {
result.assetClass = LibAsset.ERC20_ASSET_CLASS;
result.data = abi.encode(token);
}
return result;
}
function getOtherOrderType(bytes4 dataType) internal pure returns(bytes4) {
if (dataType == LibOrderDataV3.V3_SELL) {
return LibOrderDataV3.V3_BUY;
}
if (dataType == LibOrderDataV3.V3_BUY) {
return LibOrderDataV3.V3_SELL;
}
return dataType;
}
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
import "../../introspection/IERC165Upgradeable.sol";
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721Upgradeable is IERC165Upgradeable {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(address indexed from, address indexed to, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(address indexed owner, address indexed approved, uint256 indexed tokenId);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Usage of this method is discouraged, use {safeTransferFrom} whenever possible.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(address from, address to, uint256 tokenId) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId) external view returns (address operator);
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator) external view returns (bool);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(address from, address to, uint256 tokenId, bytes calldata data) external;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../utils/ContextUpgradeable.sol";
import "../proxy/Initializable.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract OwnableUpgradeable is Initializable, ContextUpgradeable {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
function __Ownable_init() internal initializer {
__Context_init_unchained();
__Ownable_init_unchained();
}
function __Ownable_init_unchained() internal initializer {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
uint256[49] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./IERC721Receiver.sol";
/**
* @dev Implementation of the {IERC721Receiver} interface.
*
* Accepts all token transfers.
* Make sure the contract is able to use its token with {IERC721-safeTransferFrom}, {IERC721-approve} or {IERC721-setApprovalForAll}.
*/
contract ERC721Holder is IERC721Receiver {
/**
* @dev See {IERC721Receiver-onERC721Received}.
*
* Always returns `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(address, address, uint256, bytes memory) public virtual override returns (bytes4) {
return this.onERC721Received.selector;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
import "@openzeppelin/contracts-upgradeable/math/SafeMathUpgradeable.sol";
library LibMath {
using SafeMathUpgradeable for uint;
/// @dev Calculates partial value given a numerator and denominator rounded down.
/// Reverts if rounding error is >= 0.1%
/// @param numerator Numerator.
/// @param denominator Denominator.
/// @param target Value to calculate partial of.
/// @return partialAmount value of target rounded down.
function safeGetPartialAmountFloor(
uint256 numerator,
uint256 denominator,
uint256 target
) internal pure returns (uint256 partialAmount) {
if (isRoundingErrorFloor(numerator, denominator, target)) {
revert("rounding error");
}
partialAmount = numerator.mul(target).div(denominator);
}
/// @dev Checks if rounding error >= 0.1% when rounding down.
/// @param numerator Numerator.
/// @param denominator Denominator.
/// @param target Value to multiply with numerator/denominator.
/// @return isError Rounding error is present.
function isRoundingErrorFloor(
uint256 numerator,
uint256 denominator,
uint256 target
) internal pure returns (bool isError) {
if (denominator == 0) {
revert("division by zero");
}
// The absolute rounding error is the difference between the rounded
// value and the ideal value. The relative rounding error is the
// absolute rounding error divided by the absolute value of the
// ideal value. This is undefined when the ideal value is zero.
//
// The ideal value is `numerator * target / denominator`.
// Let's call `numerator * target % denominator` the remainder.
// The absolute error is `remainder / denominator`.
//
// When the ideal value is zero, we require the absolute error to
// be zero. Fortunately, this is always the case. The ideal value is
// zero iff `numerator == 0` and/or `target == 0`. In this case the
// remainder and absolute error are also zero.
if (target == 0 || numerator == 0) {
return false;
}
// Otherwise, we want the relative rounding error to be strictly
// less than 0.1%.
// The relative error is `remainder / (numerator * target)`.
// We want the relative error less than 1 / 1000:
// remainder / (numerator * target) < 1 / 1000
// or equivalently:
// 1000 * remainder < numerator * target
// so we have a rounding error iff:
// 1000 * remainder >= numerator * target
uint256 remainder = mulmod(
target,
numerator,
denominator
);
isError = remainder.mul(1000) >= numerator.mul(target);
}
function safeGetPartialAmountCeil(
uint256 numerator,
uint256 denominator,
uint256 target
) internal pure returns (uint256 partialAmount) {
if (isRoundingErrorCeil(numerator, denominator, target)) {
revert("rounding error");
}
partialAmount = numerator.mul(target).add(denominator.sub(1)).div(denominator);
}
/// @dev Checks if rounding error >= 0.1% when rounding up.
/// @param numerator Numerator.
/// @param denominator Denominator.
/// @param target Value to multiply with numerator/denominator.
/// @return isError Rounding error is present.
function isRoundingErrorCeil(
uint256 numerator,
uint256 denominator,
uint256 target
) internal pure returns (bool isError) {
if (denominator == 0) {
revert("division by zero");
}
// See the comments in `isRoundingError`.
if (target == 0 || numerator == 0) {
// When either is zero, the ideal value and rounded value are zero
// and there is no rounding error. (Although the relative error
// is undefined.)
return false;
}
// Compute remainder as before
uint256 remainder = mulmod(
target,
numerator,
denominator
);
remainder = denominator.sub(remainder) % denominator;
isError = remainder.mul(1000) >= numerator.mul(target);
return isError;
}
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../proxy/Initializable.sol";
/*
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with GSN meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal initializer {
__Context_init_unchained();
}
function __Context_init_unchained() internal initializer {
}
function _msgSender() internal view virtual returns (address payable) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691
return msg.data;
}
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
import "@rarible/lib-part/contracts/LibPart.sol";
///
/// @dev Interface for the NFT Royalty Standard
///
//interface IERC2981 is IERC165 {
interface IERC2981 {
/// ERC165 bytes to add to interface array - set in parent contract
/// implementing this standard
///
/// bytes4(keccak256("royaltyInfo(uint256,uint256)")) == 0x2a55205a
/// bytes4 private constant _INTERFACE_ID_ERC2981 = 0x2a55205a;
/// _registerInterface(_INTERFACE_ID_ERC2981);
/// @notice Called with the sale price to determine how much royalty
// is owed and to whom.
/// @param _tokenId - the NFT asset queried for royalty information
/// @param _salePrice - the sale price of the NFT asset specified by _tokenId
/// @return receiver - address of who should be sent the royalty payment
/// @return royaltyAmount - the royalty payment amount for _salePrice
function royaltyInfo(
uint256 _tokenId,
uint256 _salePrice
) external view returns (
address receiver,
uint256 royaltyAmount
);
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
/**
* @dev Wrappers over Solidity's arithmetic operations with added overflow
* checks.
*
* Arithmetic operations in Solidity wrap on overflow. This can easily result
* in bugs, because programmers usually assume that an overflow raises an
* error, which is the standard behavior in high level programming languages.
* `SafeMath` restores this intuition by reverting the transaction when an
* operation overflows.
*
* Using this library instead of the unchecked operations eliminates an entire
* class of bugs, so it's recommended to use it always.
*/
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
/**
* @dev Returns the substraction of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b > a) return (false, 0);
return (true, a - b);
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*
* _Available since v3.4._
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a / b);
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*
* _Available since v3.4._
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
if (b == 0) return (false, 0);
return (true, a % b);
}
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
require(b <= a, "SafeMath: subtraction overflow");
return a - b;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
if (a == 0) return 0;
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: division by zero");
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
require(b > 0, "SafeMath: modulo by zero");
return a % b;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {trySub}.
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b <= a, errorMessage);
return a - b;
}
/**
* @dev Returns the integer division of two unsigned integers, reverting with custom message on
* division by zero. The result is rounded towards zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryDiv}.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a / b;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* reverting with custom message when dividing by zero.
*
* CAUTION: This function is deprecated because it requires allocating memory for the error
* message unnecessarily. For custom revert reasons use {tryMod}.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
require(b > 0, errorMessage);
return a % b;
}
}
@rarible/exchange-v2/contracts/OrderValidator.sol
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
import "./libraries/LibOrder.sol";
import "@rarible/lib-signature/contracts/IERC1271.sol";
import "@rarible/lib-signature/contracts/LibSignature.sol";
import "@openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol";
import "@openzeppelin/contracts-upgradeable/drafts/EIP712Upgradeable.sol";
abstract contract OrderValidator is Initializable, ContextUpgradeable, EIP712Upgradeable {
using LibSignature for bytes32;
using AddressUpgradeable for address;
bytes4 constant internal MAGICVALUE = 0x1626ba7e;
function __OrderValidator_init_unchained() internal initializer {
__EIP712_init_unchained("Exchange", "2");
}
function validate(LibOrder.Order memory order, bytes memory signature) internal view {
if (order.salt == 0) {
if (order.maker != address(0)) {
require(_msgSender() == order.maker, "maker is not tx sender");
}
} else {
if (_msgSender() != order.maker) {
bytes32 hash = LibOrder.hash(order);
// if maker is contract checking ERC1271 signature
if (order.maker.isContract()) {
require(
IERC1271(order.maker).isValidSignature(_hashTypedDataV4(hash), signature) == MAGICVALUE,
"contract order signature verification error"
);
} else {
// if maker is not contract then checking ECDSA signature
if (_hashTypedDataV4(hash).recover(signature) != order.maker) {
revert("order signature verification error");
} else {
require (order.maker != address(0), "no maker");
}
}
}
}
}
uint256[50] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
pragma abicoder v2;
import "@rarible/lib-asset/contracts/LibAsset.sol";
abstract contract ITransferExecutor {
function transfer(
LibAsset.Asset memory asset,
address from,
address to,
address proxy
) internal virtual;
}
@openzeppelin/contracts/introspection/ERC165.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "./IERC165.sol";
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts may inherit from this and call {_registerInterface} to declare
* their support of an interface.
*/
abstract contract ERC165 is IERC165 {
/*
* bytes4(keccak256('supportsInterface(bytes4)')) == 0x01ffc9a7
*/
bytes4 private constant _INTERFACE_ID_ERC165 = 0x01ffc9a7;
/**
* @dev Mapping of interface ids to whether or not it's supported.
*/
mapping(bytes4 => bool) private _supportedInterfaces;
constructor () internal {
// Derived contracts need only register support for their own interfaces,
// we register support for ERC165 itself here
_registerInterface(_INTERFACE_ID_ERC165);
}
/**
* @dev See {IERC165-supportsInterface}.
*
* Time complexity O(1), guaranteed to always use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
return _supportedInterfaces[interfaceId];
}
/**
* @dev Registers the contract as an implementer of the interface defined by
* `interfaceId`. Support of the actual ERC165 interface is automatic and
* registering its interface id is not required.
*
* See {IERC165-supportsInterface}.
*
* Requirements:
*
* - `interfaceId` cannot be the ERC165 invalid interface (`0xffffffff`).
*/
function _registerInterface(bytes4 interfaceId) internal virtual {
require(interfaceId != 0xffffffff, "ERC165: invalid interface id");
_supportedInterfaces[interfaceId] = true;
}
}
// SPDX-License-Identifier: MIT
pragma solidity 0.7.6;
pragma abicoder v2;
import "@openzeppelin/contracts-upgradeable/access/OwnableUpgradeable.sol";
import "@rarible/lazy-mint/contracts/erc-721/LibERC721LazyMint.sol";
import "@rarible/lazy-mint/contracts/erc-1155/LibERC1155LazyMint.sol";
import "@rarible/exchange-interfaces/contracts/IRoyaltiesProvider.sol";
import "@rarible/lib-bp/contracts/BpLibrary.sol";
import "./interfaces/ITransferManager.sol";
abstract contract RaribleTransferManager is OwnableUpgradeable, ITransferManager {
using BpLibrary for uint;
using SafeMathUpgradeable for uint;
// @notice protocolFee is deprecated
uint private protocolFee;
IRoyaltiesProvider public royaltiesRegistry;
// deprecated: no need without protocolFee
address private defaultFeeReceiver;
// deprecated: no need without protocolFee
mapping(address => address) private feeReceivers;
function __RaribleTransferManager_init_unchained(
uint newProtocolFee,
address newDefaultFeeReceiver,
IRoyaltiesProvider newRoyaltiesProvider
) internal initializer {
protocolFee = newProtocolFee;
defaultFeeReceiver = newDefaultFeeReceiver;
royaltiesRegistry = newRoyaltiesProvider;
}
function setRoyaltiesRegistry(IRoyaltiesProvider newRoyaltiesRegistry) external onlyOwner {
royaltiesRegistry = newRoyaltiesRegistry;
}
/**
@notice executes transfers for 2 matched orders
@param left DealSide from the left order (see LibDeal.sol)
@param right DealSide from the right order (see LibDeal.sol)
@param dealData DealData of the match (see LibDeal.sol)
@return totalLeftValue - total amount for the left order
@return totalRightValue - total amout for the right order
*/
function doTransfers(
LibDeal.DealSide memory left,
LibDeal.DealSide memory right,
LibDeal.DealData memory dealData
) override internal returns (uint totalLeftValue, uint totalRightValue) {
totalLeftValue = left.asset.value;
totalRightValue = right.asset.value;
if (dealData.feeSide == LibFeeSide.FeeSide.LEFT) {
totalLeftValue = doTransfersWithFees(left, right, dealData.maxFeesBasePoint);
transferPayouts(right.asset.assetType, right.asset.value, right.from, left.payouts, right.proxy);
} else if (dealData.feeSide == LibFeeSide.FeeSide.RIGHT) {
totalRightValue = doTransfersWithFees(right, left, dealData.maxFeesBasePoint);
transferPayouts(left.asset.assetType, left.asset.value, left.from, right.payouts, left.proxy);
} else {
transferPayouts(left.asset.assetType, left.asset.value, left.from, right.payouts, left.proxy);
transferPayouts(right.asset.assetType, right.asset.value, right.from, left.payouts, right.proxy);
}
}
/**
@notice executes the fee-side transfers (payment + fees)
@param paymentSide DealSide of the fee-side order
@param nftSide DealSide of the nft-side order
@param maxFeesBasePoint max fee for the sell-order (used and is > 0 for V3 orders only)
@return totalAmount of fee-side asset
*/
function doTransfersWithFees(
LibDeal.DealSide memory paymentSide,
LibDeal.DealSide memory nftSide,
uint maxFeesBasePoint
) internal returns (uint totalAmount) {
totalAmount = calculateTotalAmount(paymentSide.asset.value, paymentSide.originFees, maxFeesBasePoint);
uint rest = totalAmount;
rest = transferRoyalties(paymentSide.asset.assetType, nftSide.asset.assetType, nftSide.payouts, rest, paymentSide.asset.value, paymentSide.from, paymentSide.proxy);
if (
paymentSide.originFees.length == 1 &&
nftSide.originFees.length == 1 &&
nftSide.originFees[0].account == paymentSide.originFees[0].account
) {
LibPart.Part[] memory origin = new LibPart.Part[](1);
origin[0].account = nftSide.originFees[0].account;
origin[0].value = nftSide.originFees[0].value + paymentSide.originFees[0].value;
(rest,) = transferFees(paymentSide.asset.assetType, rest, paymentSide.asset.value, origin, paymentSide.from, paymentSide.proxy);
} else {
(rest,) = transferFees(paymentSide.asset.assetType, rest, paymentSide.asset.value, paymentSide.originFees, paymentSide.from, paymentSide.proxy);
(rest,) = transferFees(paymentSide.asset.assetType, rest, paymentSide.asset.value, nftSide.originFees, paymentSide.from, paymentSide.proxy);
}
transferPayouts(paymentSide.asset.assetType, rest, paymentSide.from, nftSide.payouts, paymentSide.proxy);
}
/**
@notice Transfer royalties. If there is only one royalties receiver and one address in payouts and they match,
nothing is transferred in this function
@param paymentAssetType Asset Type which represents payment
@param nftAssetType Asset Type which represents NFT to pay royalties for
@param payouts Payouts to be made
@param rest How much of the amount left after previous transfers
@param from owner of the Asset to transfer
@param proxy Transfer proxy to use
@return How much left after transferring royalties
*/
function transferRoyalties(
LibAsset.AssetType memory paymentAssetType,
LibAsset.AssetType memory nftAssetType,
LibPart.Part[] memory payouts,
uint rest,
uint amount,
address from,
address proxy
) internal returns (uint) {
LibPart.Part[] memory royalties = getRoyaltiesByAssetType(nftAssetType);
if (
royalties.length == 1 &&
payouts.length == 1 &&
royalties[0].account == payouts[0].account
) {
require(royalties[0].value <= 5000, "Royalties are too high (>50%)");
return rest;
}
(uint result, uint totalRoyalties) = transferFees(paymentAssetType, rest, amount, royalties, from, proxy);
require(totalRoyalties <= 5000, "Royalties are too high (>50%)");
return result;
}
/**
@notice calculates royalties by asset type. If it's a lazy NFT, then royalties are extracted from asset. otherwise using royaltiesRegistry
@param nftAssetType NFT Asset Type to calculate royalties for
@return calculated royalties (Array of LibPart.Part)
*/
function getRoyaltiesByAssetType(LibAsset.AssetType memory nftAssetType) internal returns (LibPart.Part[] memory) {
if (nftAssetType.assetClass == LibAsset.ERC1155_ASSET_CLASS || nftAssetType.assetClass == LibAsset.ERC721_ASSET_CLASS) {
(address token, uint tokenId) = abi.decode(nftAssetType.data, (address, uint));
return royaltiesRegistry.getRoyalties(token, tokenId);
} else if (nftAssetType.assetClass == LibERC1155LazyMint.ERC1155_LAZY_ASSET_CLASS) {
(, LibERC1155LazyMint.Mint1155Data memory data) = abi.decode(nftAssetType.data, (address, LibERC1155LazyMint.Mint1155Data));
return data.royalties;
} else if (nftAssetType.assetClass == LibERC721LazyMint.ERC721_LAZY_ASSET_CLASS) {
(, LibERC721LazyMint.Mint721Data memory data) = abi.decode(nftAssetType.data, (address, LibERC721LazyMint.Mint721Data));
return data.royalties;
}
LibPart.Part[] memory empty;
return empty;
}
/**
@notice Transfer fees
@param assetType Asset Type to transfer
@param rest How much of the amount left after previous transfers
@param amount Total amount of the Asset. Used as a base to calculate part from (100%)
@param fees Array of LibPart.Part which represents fees to pay
@param from owner of the Asset to transfer
@param proxy Transfer proxy to use
@return newRest how much left after transferring fees
@return totalFees total number of fees in bp
*/
function transferFees(
LibAsset.AssetType memory assetType,
uint rest,
uint amount,
LibPart.Part[] memory fees,
address from,
address proxy
) internal returns (uint newRest, uint totalFees) {
totalFees = 0;
newRest = rest;
for (uint256 i = 0; i < fees.length; ++i) {
totalFees = totalFees.add(fees[i].value);
uint feeValue;
(newRest, feeValue) = subFeeInBp(newRest, amount, fees[i].value);
if (feeValue > 0) {
transfer(LibAsset.Asset(assetType, feeValue), from, fees[i].account, proxy);
}
}
}
/**
@notice transfers main part of the asset (payout)
@param assetType Asset Type to transfer
@param amount Amount of the asset to transfer
@param from Current owner of the asset
@param payouts List of payouts - receivers of the Asset
@param proxy Transfer Proxy to use
*/
function transferPayouts(
LibAsset.AssetType memory assetType,
uint amount,
address from,
LibPart.Part[] memory payouts,
address proxy
) internal {
require(payouts.length > 0, "transferPayouts: nothing to transfer");
uint sumBps = 0;
uint rest = amount;
for (uint256 i = 0; i < payouts.length - 1; ++i) {
uint currentAmount = amount.bp(payouts[i].value);
sumBps = sumBps.add(payouts[i].value);
if (currentAmount > 0) {
rest = rest.sub(currentAmount);
transfer(LibAsset.Asset(assetType, currentAmount), from, payouts[i].account, proxy);
}
}
LibPart.Part memory lastPayout = payouts[payouts.length - 1];
sumBps = sumBps.add(lastPayout.value);
require(sumBps == 10000, "Sum payouts Bps not equal 100%");
if (rest > 0) {
transfer(LibAsset.Asset(assetType, rest), from, lastPayout.account, proxy);
}
}
/**
@notice calculates total amount of fee-side asset that is going to be used in match
@param amount fee-side order value
@param orderOriginFees fee-side order's origin fee (it adds on top of the amount)
@param maxFeesBasePoint max fee for the sell-order (used and is > 0 for V3 orders only)
@return total amount of fee-side asset
*/
function calculateTotalAmount(
uint amount,
LibPart.Part[] memory orderOriginFees,
uint maxFeesBasePoint
) internal pure returns (uint) {
if (maxFeesBasePoint > 0) {
return amount;
}
uint fees = 0;
for (uint256 i = 0; i < orderOriginFees.length; ++i) {
require(orderOriginFees[i].value <= 10000, "origin fee is too big");
fees = fees + orderOriginFees[i].value;
}
return amount.add(amount.bp(fees));
}
function subFeeInBp(uint value, uint total, uint feeInBp) internal pure returns (uint newValue, uint realFee) {
return subFee(value, total.bp(feeInBp));
}
function subFee(uint value, uint fee) internal pure returns (uint newValue, uint realFee) {
if (value > fee) {
newValue = value.sub(fee);
realFee = fee;
} else {
newValue = 0;
realFee = value;
}
}
uint256[46] private __gap;
}
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.2 <0.8.0;
import "../../introspection/IERC165Upgradeable.sol";
/**
* @dev Required interface of an ERC1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[EIP].
*
* _Available since v3.1._
*/
interface IERC1155Upgradeable is IERC165Upgradeable {
/**
* @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] values);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(address indexed account, address indexed operator, bool approved);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the amount of tokens of token type `id` owned by `account`.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id) external view returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids) external view returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the caller.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator) external view returns (bool);
/**
* @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must be have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `amount`.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(address from, address to, uint256 id, uint256 amount, bytes calldata data) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `amounts` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data) external;
}
@openzeppelin/contracts/access/Ownable.sol
// SPDX-License-Identifier: MIT
pragma solidity >=0.6.0 <0.8.0;
import "../utils/Context.sol";
/**
* @dev Contract module which provides a basic access control mechanism, where
* there is an account (an owner) that can be granted exclusive access to
* specific functions.
*
* By default, the owner account will be the one that deploys the contract. This
* can later be changed with {transferOwnership}.
*
* This module is used through inheritance. It will make available the modifier
* `onlyOwner`, which can be applied to your functions to restrict their use to
* the owner.
*/
abstract contract Ownable is Context {
address private _owner;
event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);
/**
* @dev Initializes the contract setting the deployer as the initial owner.
*/
constructor () internal {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
/**
* @dev Returns the address of the current owner.
*/
function owner() public view virtual returns (address) {
return _owner;
}
/**
* @dev Throws if called by any account other than the owner.
*/
modifier onlyOwner() {
require(owner() == _msgSender(), "Ownable: caller is not the owner");
_;
}
/**
* @dev Leaves the contract without owner. It will not be possible to call
* `onlyOwner` functions anymore. Can only be called by the current owner.
*
* NOTE: Renouncing ownership will leave the contract without an owner,
* thereby removing any functionality that is only available to the owner.
*/
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
/**
* @dev Transfers ownership of the contract to a new account (`newOwner`).
* Can only be called by the current owner.
*/
function transferOwnership(address newOwner) public virtual onlyOwner {
require(newOwner != address(0), "Ownable: new owner is the zero address");
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}